PRACTICE PAPER CHEMISTRY UNIT- IV (CHEMICAL KINETICS)

Subject: Chemistry Class: XII

Time: 1 Hour Max. Marks: 20

Note: There are **09** questions in this question paper with internal choice. Q. No. 1-2 consist of multiple-choice questions carrying 1 mark each. Q. No. 3-4 consist of Assertion and Reason questions carrying 1 mark each. Q. No. 5-6 consist of very short answer questions carrying 2 marks each. Q. No. 7 consists of short answer questions carrying 3 marks. Q. No. 8 consists of case- based questions carrying 4 (1+1+1+1) marks. Q. No. 9 consists of long answer questions carrying 5 marks.

S.No.	Questions		
1.	The rate of reaction for the reaction $2A + B \rightarrow C$ is found to be: rate = k[A][B], The	1	
	correct statement in relation to this reaction is that the		
	(a) Rate of formation of C is twice the rate of disappearance of A		
	(b) t _{1/2} is a constant		
	(c) unit of k must be s ⁻¹		
	(d) value of k is independent on the initial concentration of A and B		
2.	Consider the following reactant samples:	1	
	I. 1 mol of A and 1 mol of B in a 1 L vessel		
	II. 2 mol of A and 2 mol of B in a 2 L vessel		
	III. 0.2 mol of A and 0.2 mol of B in a 0.1 L vessel		
	Which of the reactant sample reacts at the highest rate?		
	(a) I (b) II (c) III (d) All react at equal rate		
	In the following questions one mark each (Q. No. 3-4) a statement of Assertion (A)		
	followed by a statement of Reason (R) is given. Choose the correct answer out of the		
	following choices.		
	(i) A and R both are correct statements and R is the correct explanation for A.		
	(ii) A and R both are correct statements and R is not correct explanation for A.		
	(iii) A is correct statement but R is wrong statement.		
	(iv) A is wrong statement but R is correct statement.		
3.	Assertion (A): Order of reaction can be zero or fractional.	1	
	Reason (R): We cannot determine order from balanced chemical equation.		
4.	Assertion (A): Formation of activated complex by reactant molecules is called as	1	
	transition state.		
	Reason (R): Transition sate is the configuration of atoms in the activated complex,		
	which if attained leads to the formation of the products.		
5.	Write the expression for 3/4 th life of a first order reaction.	2	
6.	For the reaction, $C_{12}H_{22}O_{11} + H_2O \rightarrow C_6H_{12}O_6 + C_6H_{12}O_6$	2	
	Write: (i) Rate of reaction expression (ii) Rate law equation		
	(iii)Molecularity (iv) Order of reaction		
	OR		
	How does a change in temperature affect the rate of a reaction? How can this effect on		
	the rate constant of reaction be represented quantitatively?		

7.	below: $k_1 =$	aposition reaction, the value of activation end	t 650 K, $k_2 = 2.39$	$\times 10^{-8}$ (L/mol.s), at	700 K	3
		OR constant of the decompand 3.954 x 10 ⁻² respec				
			ctivery. Calculate	the frequency factor	at 265 C and	
8.	energy of activation of reaction. Case study-based questions					4
0.	Few facts about rate constant are given below:					'
	Rate of reaction is proportional to rate constant. Greater the value of rate					
	constant, faster is the reaction.					
	• Value of rate constant is definite for a reaction at a particular temperature. With					
	the change of temperature, rate constant also changes.					
	• The value of rate constant is independent of concentration of reactants.					
	 Units of rate constant depend upon the order of reaction. 					
	Presence of catalyst changes the rate of reaction.					
	• Presence of catalyst changes the rate of reaction and thus rate constant as well,					
	by lowering the activation energy. Units of Rate constant for a reaction of n th order can be determine as,					
	Rate = $dx/dt = k[concentration]^n$,					
	$k = \frac{dx}{dt} - \frac{k[concentration]}{k}$, $k = \frac{dx}{dt} \times \frac{1}{[concentration]^n}$					
	$= (\text{concentration})^n$ = (concentration/time) x 1/[concentration]^n					
	$k = (concentration)^{1-n} time^{-1}$					
	The following questions are multiple choice questions. Choose the most appropriate					
	answer.					
	(i) Rate constant in case of first order reaction is					
	(a) Inversely proportional to the concentration units					
	(b) Independent of concentration units					
	(c) directly proportional to concentration units					
	(d) Inversely proportional to the square of concentration units.					
	(ii) If the concentrations are expressed in mol L ⁻¹ and time in s, then the units of					
	the rate constant of the first order reaction are,					
	(a) Mol L^{-1} s ⁻¹ (b) Mol ⁻¹ L s ⁻¹ (c) s ⁻¹ (d) Mol ² L - ² s ⁻¹					
	(iii) The units for the rate constant for the second order reaction are					
	(a) Mol ⁻¹ L s ⁻¹ (b) Mol L ⁻² s ⁻¹ (c) s ⁻¹ (d) Mol L ⁻¹ s ⁻¹					
	(iv) The rate of reaction, $Cl_3CCHO + NO \rightarrow CHCl_3 + NO + CO$ is given by					
	equation, Rate = k[Cl ₃ CCHO] [NO]. If concentration is expressed in					
	mol/litre, the units of k are					
	(a) $L^2 \text{ mol}^{-2} \text{ s}^{-1}$ (b) $L^{-1} \text{ mol s}^{-1}$ (c) $L \text{ mol}^{-1} \text{ s}^{-1}$ (d) s^{-1}					
9.		law for a reaction is Rat			elementary	5
	process? Expalin.					
	(ii) In a reaction between A and B, the initial rate of reaction (r ₀) was measured for					
	different initial concentrations of A and B as given below:					
	A/mol L ⁻¹	0.20	0.20	0.40		
	B/mol L ⁻¹	0.30	0.10	0.05		
	r ₀ /mol L ⁻¹ s		5.07 x 10 ⁻⁵	1.43 x 10 ⁻⁴		
	What is the order of the reaction with repect to A and B? OR					
	(i) Will the rate constant of the reaction depend upon T if the activation energy					
	of the reaction zero?					

 (ii) In a first order reaction, the concentration of the reactant is reduced from 0.6 mol L⁻¹ to 0.2 mol L⁻¹ in 5 minutes. Calculate the rate constant of the reaction. (iii) For a reaction: 2NH₃ (g) → N₂ (g) + 3H₂ (g), Rate = k (a) Write the order and molecularity of this reaction. (b) Write the unit of k.
