Applied Mathematics (Code-241) (XII)

Marking Scheme (set-4)
(1 Marks for each correct Answer)

Q.N.	Answer	Q.N.	Answer	Q.N.	Answer	Q.N.	Answer
1	B	6	B	11	C	16	B
2	B	7	D	12	C	17	C
3	D	8	B	13	C	18	A
4	C	9	D	14	A	19	A
5	A	10	A	15	D	20	A

Q.No.	Solution	Marks
21	Given $\mathrm{R}=500, \mathrm{P}=10,000$ and $i=\frac{r}{200}$ $\begin{aligned} & P=\frac{R}{i} \\ & i=\frac{R}{P}=\frac{500}{10000}=\frac{1}{20} \end{aligned}$ $\frac{r}{200}=\frac{1}{20}$ $r=10 \%$ per annum	(1) (1)
22	$\begin{array}{r} {[1-1-11]} \\ K=2 \end{array}, \quad A^{2}=\left[\begin{array}{ll} 2-2-22 \end{array}\right]$ OR $\begin{aligned} & f(A)=A^{2}-4 A+7 \\ & A^{2}=\left[\begin{array}{llll} 1 & 12 & -4 & 1 \end{array}\right] \\ & f(A)=\left[\begin{array}{llll} 0 & 0 & 0 & 0 \end{array}\right] \end{aligned}$	$\begin{aligned} & \hline(1) \\ & (1) \\ & \text { or } \\ & (1) \\ & (1) \end{aligned}$
23	$n p+n p q=1.8$ and $n=5$ Getting $p=0.2, q=0.8$ Probability for 2 successes $=P(2)=10(0.2)^{2}(0.8)^{3}=0.2048$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & { }^{1 / 2} \end{aligned}$
24	Givent $_{1}=3 \mathrm{hr}, t_{2}=6 \mathrm{hr}, \mathrm{y}=2 \mathrm{~km} / \mathrm{h}$	

	$\begin{align*} & x=\frac{y\left(t_{1}+t_{2}\right)}{\left(t_{2}-t_{1}\right)} \\ & \tag{1}\\ & \\ &=6 \mathrm{~km} / \mathrm{h} \end{align*}$ Hence speed of man in still water $=6 \mathrm{~km} / \mathrm{h}$ OR Ramesh runs 5 m in 3 seconds Time taken to run $200 \mathrm{~m}=\frac{3}{5} \times 200$ $=120 \text { second }$	(1) (1) (1) (1)
25	$v_{f}=216000, v_{i}=200000$ Nominal Rate $=\frac{v_{f}-v_{i}}{v_{i}} \times 100$ $\begin{aligned} & =\frac{16000}{200000} \times 100 \\ & \quad=8 \% \end{aligned}$	(1) (1)
26	$\begin{aligned} & 2006-63 \\ & 2007-60.5 \\ & 2008-56.25 \\ & 2009-53.5 \\ & 2010-53.5 \\ & 2011-52.5 \end{aligned}$ OR $a=\frac{\sum \quad y}{n}=\frac{115}{5}=23$ And $\quad b=\frac{\sum \quad x y}{\sum \quad x^{2}}=69 / 10=6.9$ $y_{t}=a+b x, \quad y_{t}=23+6.9 x$ Draw the graph	(1/2 marks for each part)

\begin{tabular}{|c|c|c|}
\hline 27 \& \[
\begin{gathered}
\text { Quantity of milk after } \mathrm{n} \text { operation }=40\left(1-\frac{4}{40}\right)^{3} \\
=29.16
\end{gathered}
\] \& \[
\begin{aligned}
\& \text { (2) } \\
\& (1)
\end{aligned}
\] \\
\hline 28 \& \begin{tabular}{l}
\[
\begin{aligned}
\& \int \frac{x^{2}}{(x-1)(x-2)(x-3)} d x \\
\& =\int \quad\left(\frac{\frac{1}{2}}{x-1}+\frac{-4}{x-2}+\frac{\frac{9}{2}}{x-3}\right) d x \\
\& =\frac{1}{2} \log x-4 \log \log x+\frac{9}{2} \log x+\mathrm{C}
\end{aligned}
\] \\
OR
\[
-\int_{-2}^{-1}\left(x^{3}-x\right) d x+\int_{-1}^{0}\left(x^{3}-x\right) d x-\int_{0}^{1}\left(x^{3}-x\right) d x
\] \\
for integration
\[
=11 / 4
\]
\end{tabular} \& \begin{tabular}{l}
(2) \\
(1) \\
OR \\
(1) \\
(1) \\
(1)
\end{tabular} \\
\hline 29 \& \begin{tabular}{l}
\[
\begin{aligned}
\& t=\frac{\bar{x}-\mu}{\frac{s}{\sqrt{n}}} \\
\& =2.24
\end{aligned}
\] \\
Degree of freedom \(=20-10=19\) \\
and \(t_{0.05}=1.729\) null hypothesis is rejected since \(t\) - statistics more than the tabulated value
\end{tabular} \& (1)

(1)
(1)

\hline 30 \& | Cost of house $=4500000$ |
| :--- |
| Down payment $=500000$ |
| Balance amount $=40,00000$ |
| So, $\quad \mathrm{P}=40,00000, i=\frac{6}{12 \times 100}=0.005 n=25 \times 12=300$ | \& (1)

(1)

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \& \[
\begin{aligned}
\& \mathrm{EMI}=\frac{p \times i x(1+i)^{n}}{(1+i)^{n}-1} \\
= \& \frac{4000000 \times 0.005(1.005)^{300}}{(1.005)^{300}-1} \\
= \& 25772 \text {, Hence EMI }=\mathbf{2 5 7 7 2} .
\end{aligned}
\] \& (1) \\
\hline 31 \& \[
\begin{aligned}
\& =\frac{R\left((1+i)^{n}-1\right)}{i} \text { here } i=\frac{5}{200}=0.025 \\
\& R=\frac{A X i}{(1+i)^{n}-1} \\
\& \mathrm{R}=39148
\end{aligned}
\] \& \begin{tabular}{l}
(1) \\
(2)
\end{tabular} \\
\hline 32 \& \begin{tabular}{l}
Probability of defective buckets \(=0.05\)
\[
\begin{aligned}
\& \mathrm{n}=100 \\
\& \\
\& \\
\& m=n p=5
\end{aligned}
\] \\
Let \(\mathrm{X}=\) number of defective buckets in a sample of 100
\[
p(X=r)=\frac{e^{-m} m^{r}}{r!}, r=0,1,2,3,-\cdots---
\] \\
(i) \(\mathrm{P}(\) No of defective buckets \()=p(r=0)\)
\[
=\frac{e^{-5} 5^{0}}{0!}=e^{-5}=0.0067
\] \\
(ii) \(\mathrm{P}(\) At most one defective buckets \()=\mathrm{P}(r=0,1)\)
\[
\begin{aligned}
\& =\frac{e^{-5} 5^{0}}{0!}+\frac{e^{-5} 5^{1}}{1!}=0.0067+0.0335 \\
\& \quad=0.0402
\end{aligned}
\] \\
OR
\end{tabular} \& (1)

(2)

(2)

\hline
\end{tabular}

	$\mathrm{X}=$ scores of students, $\mu=45, \sigma=5$, $Z=\frac{X-\mu}{\sigma}=(\mathrm{X}-45) / 5$ (i) When $X=45, Z=0$ $P(X>45)=P(Z>0)=0.5$ $\Rightarrow 50 \%$ students scored more than the mean score (ii) When $X=30, Z=-3$ and when $X=50, Z=1$ $\begin{aligned} & P(30<X<50)=P(-3<Z<1)=P(-3<Z \leq 1) \\ & =P(-3<Z \leq 0)+P(0 \leq Z<1) \\ & =P(0 \leq Z<3)+P(0 \leq Z<1) \\ & =0.4987+0.3413=0.84 \end{aligned}$ $\Rightarrow 84 \%$ students scored more than the mean score	(1) (2) (2)
33	Let x be the number of guests for the booking Clearly, $x>100$ to avail discount Profit $\mathrm{P}=\left\lfloor 4800-\frac{200(x-100)}{10}\right\rfloor x=6800 x-20 x^{2}$ $\frac{d p}{d x}=6800-40 x$ $\begin{equation*} \frac{d p}{d x}=0, \text { get } \mathrm{x}=170 \tag{1} \end{equation*}$ $\frac{d^{2} p}{d^{2} x}=-40<0$ (1)	(1) (1)

	A booking for 170 guests will maximise the profit of the company And, Profit= $P=\left\lfloor 4800-\frac{200(x-100)}{10}\right\rfloor x$, put $\mathrm{x}=170$ we get Profit $=₹ 5,78,000$ OR $\begin{aligned} & \mathrm{P}(\mathrm{x})=\mathrm{R}(\mathrm{x})-\mathrm{C}(\mathrm{x}) \\ &= 5 \mathrm{x}-\left(100+0.025 \mathrm{x}^{2}\right) \\ & \Rightarrow \mathrm{P}^{\prime}(\mathrm{x})=5-0.05 \mathrm{x} \\ & \mathrm{P}^{\prime}(\mathrm{x})=0 \\ & \Rightarrow x=100 \end{aligned}$ $\operatorname{AsP} P^{\prime \prime}(x)=-0.05<0, \forall x$ \therefore Manufacturing 100 dolls will maximise the profit of the company And, $P(x)=5 x-\left(100+0.025 x^{2}\right)$ Put $x=100$ we get total Profit $=₹ 1,50,000$	(1) (1) (1) (1) (1) (1)
34	cost of new machine $=65000$ Net amount required at the end of 25 year $=62500$ $\mathrm{R}=\frac{i s}{(1+i) n}-1, \mathrm{R}=\frac{0.035 X 62500}{(1.035)^{25}-1}=1604.68$ Thus rs . 1604.68 are set aside each year out of the profits.	(1) (1) (2) (1)
35	Here $\begin{aligned} & \quad D=-1 \\ & D 1=-11 \\ & D 2=-92 \\ & D 3=-53 \end{aligned}$	(1) (1) (1) (1)

\begin{tabular}{|c|c|c|}
\hline \& By Cramer's rule
\[
x=\frac{D 1}{D}=\frac{-11}{-1}=11, y=\frac{D 2}{D}=\frac{-92}{-1}=92 z=\frac{D 3}{D}=\frac{-53}{-1}=53
\] \& (1) \\
\hline 36 \& \begin{tabular}{l}
(1) Pipe C empties 1 tank in 12 hr . \(=\) \(\frac{2}{5}\) the tank in \(\frac{2}{5} x 12=\frac{24}{5} h r=4 \frac{4}{5} h r\) \\
(2) Part of tank filled in 1 hour \(=\frac{1}{6}+\frac{1}{8}-\frac{1}{12}=\frac{5}{24}\) \(=\) time taken to fill tank completely \(=\frac{24}{5} h r .=4 \frac{4}{5} h r\). \\
(3) At 5 am , Let the tank be completely filled in ' t ' hours \(\Rightarrow\) pipe A is opened for ' t ' hours pipe \(B\) is opened for ' \(t-3\) ' hours \\
And, pipe \(C\) is opened for ' \(t-4\) ' hours \(\Rightarrow\) In one hour, part of tank filled by pipe \(A=\frac{t}{6}\) part of tank filled by pipe \(B=\frac{t-3}{8}\) \\
And part of tank filled by pipe \(C=\frac{t-4}{12}\) \\
Hence
\[
\frac{t}{6}+\frac{t-3}{8}-\frac{t-4}{12}=1, \quad t=5
\] \\
Total time to fill the tank \(-=5 \mathrm{hrs}\). \\
OR \\
6 am, pipe \(C\) is opened to empty \(1 / 2\) filled tank \\
Time to empty \(=\frac{24}{5}\) hours \\
Time for cleaning \(=1\) hour \\
Part of tank filled by pipes \(A\) and \(B\) in 1 Hour \(=\frac{1}{6}+\frac{1}{8}=\frac{7}{24}\) \\
Part of tank filled by pipes \(A\) and \(B\) in 1 hour \(=1 / 15+1 / 12+1 / 20=3 / 20^{\text {th }}\) tank \(\Rightarrow\) time taken to fill the tank completely \(=\frac{24}{7}\) hours \\
Total time taken in the process
\end{tabular} \& (1)
(1)

(2)

\hline
\end{tabular}

$=\frac{24}{5}+1+\frac{24}{5} \quad=\frac{323}{35} h r s \quad=9 \frac{8}{35}$ hrs		
37	equation of AD $2 x+y=50$ Equation of BC $x+2 y=40 \quad(1)$ the co-ordinates of points B and C B (20,10) and C (0,20) OR the Constraints for the LPP. $2 x+y<=50$, $X+2 y<=40$,	(1)
$x>=0, y>=0$.		

